The Retinoblastoma Tumor Suppressor Regulates a Xenobiotic Detoxification Pathway

نویسندگان

  • Maria Teresa Sáenz Robles
  • Ashley Case
  • Jean-Leon Chong
  • Gustavo Leone
  • James M. Pipas
چکیده

The retinoblastoma tumor suppressor (pRb) regulates cell cycle entry, progression and exit by controlling the activity of the E2F-family of transcription factors. During cell cycle exit pRb acts as a transcriptional repressor by associating with E2F proteins and thereby inhibiting their ability to stimulate the expression of genes required for S phase. Indeed, many tumors harbor mutations in the RB gene and the pRb-E2F pathway is compromised in nearly all types of cancers. In this report we show that both pRb and its interacting partners, the transcriptional factors E2F1-2-3, act as positive modulators of detoxification pathways important for metabolizing and clearing xenobiotics--such as toxins and drugs--from the body. Using a combination of conventional molecular biology techniques and microarray analysis of specific cell populations, we have analyzed the detoxification pathway in murine samples in the presence or absence of pRb and/or E2F1-2-3. In this report, we show that both pRb and E2F1-2-3 act as positive modulators of detoxification pathways in mice, challenging the conventional view of E2F1-2-3 as transcriptional repressors negatively regulated by pRb. These results suggest that mutations altering the pRb-E2F axis may have consequences beyond loss of cell cycle control by altering the ability of tissues to remove toxins and to properly metabolize anticancer drugs, and might help to understand the formation and progression rates of different types of cancer, as well as to better design appropriate therapies based on the particular genetic composition of the tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rb/E2F pathway and cancer.

Over the past decade, studies focusing on the mechanisms controlling cellular proliferation have converged with equally intensive efforts directed at the analysis of oncogenic pathways associated with human cancer. These convergent studies have revealed the central role played by the pathway that controls the activity of the retinoblastoma tumor suppressor protein (Rb), which in turn regulates ...

متن کامل

MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma

Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. H...

متن کامل

Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation

The Retinoblastoma (RB) tumor suppressor regulates G1 /S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatmen...

متن کامل

Cyclins, Cdks, E2f, Skp2, and more at the first international RB Tumor Suppressor Meeting.

The RB1 gene was cloned because its inactivation causes the childhood ocular tumor, retinoblastoma. It is widely expressed, inactivated in most human malignancies, and present in diverse organisms from mammals to plants. Initially, retinoblastoma protein (pRB) was linked to cell cycle regulation, but it also regulates senescence, apoptosis, autophagy, differentiation, genome stability, immunity...

متن کامل

RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling.

Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011